National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Dynamics of small bodies in the Solar System: from dust particles to asteroid
Pokorný, Petr
In this thesis, we study two different topics: collisional probability between two bodies and dynamics of the sporadic meteoroids in the Solar System. Determination of the collision probabilities in the Solar System is one of the important problems in mod- ern celestial mechanics. Here, we generalize classical theories of the collisions between two bodies by Öpik, Wetherill or Greenberg by including the Kozai-Lidov oscillations, a mechanism that significantly change orbital eccentricity and inclination in the Solar System. Sporadic meteors have been studied for many decades providing a wealthy re- source of data. Here, we build dynamical steady-state models for all known populations observed in the sporadic meteoroid complex based on the latest and most precise data provided by Canadian Meteor Orbit Radar (CMOR). Our models using the latest theo- ries for cometary populations in the Solar System accurately describe observed sporadic background population. Our results are in agreement with observations provided by space probes IRAS and LDEF.
Dynamics of small bodies in the Solar System: from dust particles to asteroid
Pokorný, Petr ; Vokrouhlický, David (advisor) ; Borovička, Jiří (referee) ; Wiegert, Paul (referee)
In this thesis, we study two different topics: collisional probability between two bodies and dynamics of the sporadic meteoroids in the Solar System. Determination of the collision probabilities in the Solar System is one of the important problems in mod- ern celestial mechanics. Here, we generalize classical theories of the collisions between two bodies by Öpik, Wetherill or Greenberg by including the Kozai-Lidov oscillations, a mechanism that significantly change orbital eccentricity and inclination in the Solar System. Sporadic meteors have been studied for many decades providing a wealthy re- source of data. Here, we build dynamical steady-state models for all known populations observed in the sporadic meteoroid complex based on the latest and most precise data provided by Canadian Meteor Orbit Radar (CMOR). Our models using the latest theo- ries for cometary populations in the Solar System accurately describe observed sporadic background population. Our results are in agreement with observations provided by space probes IRAS and LDEF.
Heat diffusion equation and thermophysical modelling of asteroids
Pohl, Leoš ; Ďurech, Josef (advisor) ; Čapek, David (referee)
Light curve inversion is a standard method to determine shapes, rotation periods and spin axis orientations of asteroids. This method can be extended to determine the size, albedo, thermal inertia and surface roughness parameters of an asteroid by including observations in thermal infrared. A solution of the Heat Conduction Equation (HCE) is necessary to model infrared flux from the asteroid. We analyse the accuracy requirements of the extended method for numerical solution of the HCE. We show that current implementation leads to errors in flux that are substantial. We recommend changes in the current implementation of the HCE solving approach to address the accuracy issues. We discuss uniqueness and stability of the solutions produced by the extended method as well as the accuracy of the determined parameters and their stability. Shapes of asteroids are produced and their physical attributes are determined based on light curve and infrared data.
Dynamics of small bodies in the Solar System: from dust particles to asteroid
Pokorný, Petr
In this thesis, we study two different topics: collisional probability between two bodies and dynamics of the sporadic meteoroids in the Solar System. Determination of the collision probabilities in the Solar System is one of the important problems in mod- ern celestial mechanics. Here, we generalize classical theories of the collisions between two bodies by Öpik, Wetherill or Greenberg by including the Kozai-Lidov oscillations, a mechanism that significantly change orbital eccentricity and inclination in the Solar System. Sporadic meteors have been studied for many decades providing a wealthy re- source of data. Here, we build dynamical steady-state models for all known populations observed in the sporadic meteoroid complex based on the latest and most precise data provided by Canadian Meteor Orbit Radar (CMOR). Our models using the latest theo- ries for cometary populations in the Solar System accurately describe observed sporadic background population. Our results are in agreement with observations provided by space probes IRAS and LDEF.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.